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LR3M: Robust Low-Light Enhancement via
Low-Rank Regularized Retinex Model
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and Jiaying Liu , Senior Member, IEEE

Abstract— Noise causes unpleasant visual effects in low-light
image/video enhancement. In this paper, we aim to make the
enhancement model and method aware of noise in the whole
process. To deal with heavy noise which is not handled in
previous methods, we introduce a robust low-light enhancement
approach, aiming at well enhancing low-light images/videos and
suppressing intensive noise jointly. Our method is based on
the proposed Low-Rank Regularized Retinex Model (LR3M),
which is the first to inject low-rank prior into a Retinex
decomposition process to suppress noise in the reflectance map.
Our method estimates a piece-wise smoothed illumination and
a noise-suppressed reflectance sequentially, avoiding remaining
noise in the illumination and reflectance maps which are usually
presented in alternative decomposition methods. After getting the
estimated illumination and reflectance, we adjust the illumina-
tion layer and generate our enhancement result. Furthermore,
we apply our LR3M to video low-light enhancement. We consider
inter-frame coherence of illumination maps and find similar
patches through reflectance maps of successive frames to form
the low-rank prior to make use of temporal correspondence. Our
method performs well for a wide variety of images and videos,
and achieves better quality both in enhancing and denoising,
compared with the state-of-the-art methods.

Index Terms— Low-light enhancement, denoising, retinex
model, low-rank decomposition.

I. INTRODUCTION

W ITH the booming of social media such as Facebook
and YouTube, it becomes popular to take photograph or

video to record people’s daily lives and share them with others
through the Internet. However, due to lacking the professional
shotting skill for most users, many photos are captured under
low-light circumstance due to backlight, under-exposure and
dark environment. These photos, called low-light images,
suffer from low visibility, low contrast and noise. It is desirable
to directly enhance the images and apply denoising during
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the camera processing pipeline [1], taking the raw signal
as input, where the dynamic of pixel values (in raw Bayer
image) is higher. However, in many cases, it might be not
easy to access that pipeline for hardware and economical
reasons. Therefore, many researches focus on post-processing
techniques to enhance the visual quality of these images.
In this paper, we follow the second route.

There are several kinds of methods to enhance low-light
images, including histogram equalization [2], [3], inverse
domain operation [4], [5], Retinex decomposition [6]–[9],
and deep learning [10], [11]. Retinex decomposition-based
methods consider the scene in human’s eyes as the product of
reflectance and illumination layers. The enhanced results are
produced by adjusting the corresponding layers. The earliest
methods directly regard the decomposed reflectance layer as
the enhanced result [6]–[9]. The single-scale Retinex (SSR) [6]
and multi-scale Retinex (MSR) [7] utilize the Gaussian filter
to build Retinex representation. In [9], bilateral filter is utilized
to remove halo artifacts. Later approaches adjust both illumi-
nation and reflectance layers, and reconstruct the enhanced
result by combining them. In [12]–[14], variational models
estimate the piecewise continuous reflectance layer and smooth
illumination layer of the Retinex model.

In these methods, the logarithmic transformation is widely
used because of the ease of modeling by most Retinex based
methods. However, the work [15] found that logarithmic
transformation is not a good choice. To cover the shortage
of logarithmic form, a weighted variational model is provided
to estimate both the reflectance and the illumination. The
reconstructed results are visually pleasing in light distribution
but contain observable noise, which impairs the overall visual
quality. Another work [16] pays attention to strengthening
illumination map by imposing a structure prior. It effectively
enhances the contrast. However, it leads to over-exposure and
detail loss in bright regions. Besides, since the unprocessed
reflectance contains much noise, after enhancement, noise
will be amplified. An ad-hoc denoising procedure via
BM3D [17] is applied. However, there are remaining noise
or over-smoothed details. Wang et al. [18] concentrated on
intrinsic image decomposition and introduces constraints on
both reflectance and illumination layers. They do not take
noise as an influence factor in the decomposition procedure.

Recently, Li et al. [19] proposed a structure-revealing
low-light enhancement approach based on a Refined Retinex
model. They tried to remove noise by suppressing small
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gradients in the reflectance component. However, adjusting
the gradients becomes less useful when there is heavy noise.
Furthermore, their model assumes that the illumination com-
ponent is smooth enough, which leads to observable noise
appearing in the reflectance map. But using an alternating
direction minimization algorithm makes the left noise disturb
the estimation of both illumination and reflectance maps.

In this paper, we consider noise as a non-negligible fac-
tor in Retinex based decomposition. We aim to make the
proposed model and method aware of noise in the whole
process, not in the form of a separate ad-hoc operation.
Compared to previous methods that only consider light noise
modeling, we also aim to model and remove heavy noise
in the low-light image. Specifically, we incorporate low-rank
minimization into Retinex decomposition. A robust low-light
enhancement method via Low-Rank Regularized Retinex
Model (LR3M) is proposed to simultaneously enhance the
images and remove noise. Considering that, estimating the
illumination and reflectance simultaneously but alternatively
causes remaining noise in both illumination and reflectance
maps, our method chooses to estimate both the illumination
and the reflectance maps in a sequential manner. That is,
we first estimate the piece-wise illumination map, independent
from the reflectance map. Then, we refine the reflectance based
on both the refined illumination and the original image. In this
step, low rank prior is enforced on the reflectance map to
suppress noise. After obtaining the preferred illumination and
reflectance, the final enhancement result is generated by com-
bining the reflectance and the Gamma corrected illumination.

This paper is an extension of our previous conference
paper [20]. Based on the sequential decomposition in the
preliminary work, we additionally inject a low-rank prior to
regularize the estimation of the reflectance map and suppress
noise in this map. Moreover, we apply our LR3M to robust
video low-light enhancement, with inter-frame illumination
coherence constraint and more structural correspondence from
adjacent frames. We also add extensive experimental analysis
to evaluate the effectiveness of the proposed framework on
both images and videos. In summary, the contributions of this
paper lie in three aspects:

• We propose a robust low-light enhancement method that
can both enhance the low-light image/video and denoise
jointly in a sequential manner. We demonstrate that an
alternative Retinex decomposition causes remaining noise
in both illumination and reflectance maps, which impairs
overall visual quality. Therefore, our LR3M method is
based on a sequential decomposition to make the illumi-
nation map free of noise.

• We are the first to inject the low-rank prior into the
Retinex decomposition method. Noise is considered as
an explicit term in a robust Retinex model. Then, dif-
ferent priors are enforced to estimate illumination and
reflectance maps. The reflectance map is constrained by
low-rank prior, which facilitates noise removal in both
the reflectance map and final enhanced result.

• Our enhancement method can be applied to both images
and videos. We consider the inter-frame coherence of

illumination maps and find matched blocks through
reflectance images of successive frames so as to maintain
temporal consistence. In video enhancement case, our
low-rank prior is enforced on the three-dimensional pixel
volume flattened from the combination of temporally
neighboring patches, which considers the temporal con-
text and benefits the temporal consistency. Extensive
experimental results demonstrate the effectiveness of the
proposed method objectively and subjectively.

The rest of the paper is organized as follows: Sec. II intro-
duces related Retinex decomposition based low-light image
enhancement methods and low-rank minimization method.
In Sec. III, the proposed approach is introduced and analyzed,
and the algorithm is described. In addition, we elaborate our
extension method to handle video low light enhancement.
Experimental results are shown in Sec. IV and concluding
remarks are given in Sec. V.

II. RELATED WORKS

A. Low-Light Image Enhancement

Low-light image enhancement approaches amplify illu-
mination and improve visibility of dark images. They are
classified into four categories: histogram equalization-based,
inverse domain-based, Retinex decomposition-based, and deep
learning-based.

The most intuitive and simplest way is to directly amplify
the illumination of a low-light image. However, this oper-
ation results in over-saturation and detail loss in bright
areas. Histogram equalization (HE) based methods flatten
the histogram and stretch the dynamic range of the intensity,
alleviating the above problems. To adapt to various intensity
distributions of regions rather than only considering global
histogram of the entire image, a variant of HE, contrast limited
adaptive histogram equalization (CLAHE) [3] is designed to
perform HE in each divided block with contrast limiting to
mitigate over-enhanced details. A dynamic HE method [2]
is developed to perform contrast enhancement on low-light
images. Later on, edge-aware tone mapping methods such
as edge-preserving decomposition [21] and local Laplacian
filtering [22] are proposed to alleviate block artifacts. Recently,
a generalized Gaussian mixture-based fusion method [23]
is proposed to restore unevenly illuminated images from
under-exposure, normal-exposure, and over-exposure images.
A dual-exposure fusion algorithm [24] using illumination esti-
mation techniques is proposed to provide an accurate contrast
and lightness enhancement. Without a special consideration on
noise, the noise and artifacts will be amplified in their results.
Some researchers [4], [5] noticed the similarity between haze
images and the inverted low-light images. Thus, these inverse
domain-based methods applied dehazing methods to enhance
low-light image.

To jointly adjust illumination and suppress noise, Retinex
theory-based methods are put forward. The theory assumes
that, images are decomposed into reflectance and illumination
layers. Then, the enhanced results are reconstructed from the
corresponding adjusted layers. The earliest methods utilize the
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decomposed reflectance layer as the enhanced result [6]–[9].
The single-scale Retinex (SSR) [6] and multi-scale Retinex
(MSR) [7] utilize the Gaussian filter, while [9] uses the
bilateral filter to remove halo artifacts. Successive methods
manipulate both illumination and reflectance layers to produce
the enhanced result. In [12]–[14], variational models are used
to estimate the smooth illumination layer and piecewise con-
tinuous reflectance layer of the Retinex model. Li et al. [19]
built a robust Retinex model with an explicit injected noise
term and made the first attempt to estimate a noise map out
of that model. These methods consider less on the constraints
on the reflectance layer, and the latent intensive noises in the
low-light regions are usually amplified.

Deep learning-based low-light image enhancement meth-
ods have also been studied. Yang et al. [10] proposed to
enhance low-light images by coupled dictionary learning.
Lore et al. [11] used a deep auto-encoder named Low-Light
Net (LLNet) to perform contrast enhancement and denois-
ing. In [25], deeply root in multi-scale Retinex represen-
tation, a feed-forward convolutional neural network with
different Gaussian convolution kernels is proposed to learn
an end-to-end mapping between dark and bright images.
In [26], Wang et al. proposes a deep Retinex-Net including
a Decom-Net for decomposition and an Enhance-Net for
illumination adjustment. In [27], Yang et al. make the attempt
in the semi-supervised learning for low-light image enhance-
ment. In this work, a deep recursive band representation is
built to connect fully-supervised and un-supervised learning
frameworks and integrate their superiorities. The performance
of these works rely heavily on the quality of datasets. Due to
the lack of a good metric to evaluate various aspects of the
overall quality of the enhanced results, e.g. detail preservation,
visual naturalness and contrast distribution, their results are not
satisfying in some visual aspects.

B. Low-Rank Minimization

Low-rank minimization is a commonly used tool in image
completion and denoising. The intrinsic content of a matrix is
usually assumed to be low-rank, because noise is distributed
more randomly than the principal component of the matrix.
This method recovers or completes a degraded matrix by
minimizing the rank of an input corrupted matrix. Given an
input matrix P , the original low-rank minimization problem
is presented as follows:

min rank(L), s. t. L� = P�, (1)

where � represents locations of known elements.
The original low-rank minimization problem in Eqn. (1) is

NP-hard, and cannot be solved efficiently. In [28], the problem
is relaxed by replacing rank constraint with nuclear norm of
the matrix as follows:

min ‖L‖∗, s. t. L� = P�, (2)

where ‖L‖∗ is the nuclear norm of matrix L, the sum of the
singular values. Eqn. (2) is equivalent to:

argmin
L

‖L − P‖2
F + λ‖L‖∗. (3)

Wright et al. [29] introduced the iterative thresholding
approach to solve a relaxed convex form of the prob-
lem. The accelerated proximal gradient approach is provided
in [29], [30]. Zhang et al. further utilized the truncated nuclear
norm [31], [32] to minimize the sum of small singular values.
Ono et al. [33] proposed the block nuclear norm, which
provides a superior characterization of the texture component.

Some works apply low-rank minimization to image com-
pletion and denoising. In [34], a spatially adaptive iter-
ative singular-value thresholding method is developed to
restore images. In [35], [36], low-rank prior is combined
with multi-planar autoregressive model for image completion.
In our paper, we are the first to introduce low-rank prior
into a Retinex model for low-light image/video enhancement,
suppressing noise while enhancing the illumination. We adopt
the augmented Lagrange multiplier minimization algorithm
and iterative singular-value thresholding method [34] to solve
this joint problem.

III. ROBUST LOW-LIGHT ENHANCEMENT

In this section, we construct a low-rank constrained opti-
mization function to estimate the illumination and reflectance
maps of the Retinex model. Then, a sequential solution is
provided for robust low light image enhancement. Finally,
the proposed method is transferred into video enhancement.
Fig. 1 shows the framework of our method.

A. Design Methodology

The traditional Retinex model considers an image S as the
multiplication of a reflectance layer R and an illumination
layer L physically:

S = R ◦ L, (4)

where the operator ◦ denotes the element-wise multiplication.
Reflectance R depicts the intrinsic property of captured

objects, which is considered to be consistent under any
lightness conditions and full of structural details. The illu-
mination L represents the various lightness on objects. It is
piece-wise continuous and preserves major edges without
small gradients [13], [37].

Knowing that low light may introduce much noise to the
image and enhance the picture inevitably intensifies the noise
at the same time, we consider a robust Retinex model [19]
with an additional noise term N as follows:

S = R ◦ L + N. (5)

Many methods focus on the illumination component L and
simply take R′ = S/L as the obtained reflectance, which
actually keeps most unpleasant noise intact in the reflectance
image for R′ = R + N/L. Thus, those methods always lead to
noisy results and often require an extra denoising procedure.
In this case, two properties are preferred in a Retinex-based
low-light enhancement method:

• Full Noise Awareness. Noise has a negative effect
on visual quality of enhanced results and is also a
non-negligible factor in low-light enhancement. Most
previous methods suppress noise by pre/post-processing,
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Fig. 1. Framework of the proposed method. We first use an initial illumination to refine the final illumination. Following that we use the obtained illumination
map and the input image S to get an initial reflectance map R(0). Then we estimate a noise-free reflectance map based on low-rank regulation. Finally the
enhanced image is generated from the illumination and reflectance after the illumination adjustment.

which easily leads to residual noises or over-smoothed
details in the results, as shown in Fig. 2. Thus, a desirable
low light enhancement method should be fully aware
of noise and handle it adaptively through the whole
enhancement process.

• Sequential Optimization. Some methods [15], [19], [38]
use term ‖R · L−S‖2

F in their equations, and in order to
calculate both R and L simultaneously, they iteratively
update each variable while regarding the other variables
as constants. In other words, L is calculated on the
basis of the previous result of R in every iteration and
R is estimated in a same way. However, during these
procedures, the noise often observed in the reflectance
image continuously impairs the expected illumination
map L, which leads to a more degraded reflectance map R
in following iterations. This implicates the potential supe-
riority of a one-round sequential method to an alternative
updating one. The examples of two different methods can
be found in Sec. IV-B.

Based on this consideration, in our work, we estimate
the illumination and the reflectance in a successive sequence
so that they can be more easily separated compared to an
iterative manner. Besides, the low-rank prior is injected into
an optimization function to suppress noise in the reflectance
layer during the whole optimization process. Thus, our method
is by nature capable of adjusting global illumination and
removing noise. In the next section, we give the overall
objective function and elaborate our proposed method.

B. Single Image Low-Light Enhancement

For low-light images, it usually suffers from darkness and
unbalanced illumination distributions. Estimating R and L
from S is an ill-posed problems, thus we construct an opti-
mization function that solves the inverse problem of Eqn. (4)

Fig. 2. Visual results of our method and methods using denoising as
pre/post-processing methods. (a) and (b): results using low-light enhancement
and denoising methods in different orders. (c): result of LIME [16]. (d): result
of LR3M.

with regularization terms:
argmin

L ,R
‖R ◦ L−S‖2

F + α‖∇L‖1 + β‖∇ R−G‖2
F

+ω
∑

i

‖N Ni (R)‖∗, (6)

where α, β and ω are weighting parameters that control the
importance of different terms. ‖ · ‖F , ‖ · ‖1 and ‖ · ‖∗ represent
the Frobenius norm, �1 norm and nuclear norm, respectively.

In addition, ∇ is the first order differential operator. N Ni (·)
is a patch extraction operation that collects similar patches of
the patch located at i . That is, N Ni (R) = [Ri1 , Ri2 , . . . , Rik ] ∈
R

b2×k is the similar patch group of the reference patch Ri1 ,
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where b is the patch size and k is the number of nearest
neighbors of the reference patch. G is the adjusted gradient
of the observed image S. The role of each term in Eqn. (6) is
interpreted below:

• ‖R ◦ L−S‖2
F constrains the fidelity between the observed

image S and the recomposed one R ◦ L.
• ‖∇L‖1 enforces the total variation sparsity and

piece-wise smoothness of the illumination map L.
• ‖N Ni (R)‖2∗ minimizes the rank of matrices of similar

patches of R, so as to make it get rid of noise and artifacts.
• ‖∇ R−G‖2

F minimizes the distance between the gradient
of the reflectance R and that of the observed image
S (estimated by G), so that the contrast of the final
result can be strengthened. To get a preferable reflectance
estimation R whose gradients are suppressed in smooth
areas and fully kept at edge regions, G is inferred from
an adjusted ∇S [19], [20] as follows:

G = (1 + λe−|∇ Ŝ|/σ ) ◦ ∇ Ŝ, (7)

∇ Ŝ =
{

0, if |∇S| < ε,

∇S, otherwise,
(8)

where λ controls the degree of the amplification, σ con-
trols the amplification rate of different gradients and ε is
the threshold that filters small gradients. By suppressing
small gradients first, this equation minimizes the possible
noise and then strengthens the overall gradients with
adaptive proportions.

In the following, we propose sequential solution to estimate
the undisturbed illumination L using an initial illumination
map L̂ and the preferred reflectance R. For each observed
image, L̂ and G only need to be calculated once.

1) Solution to L-Problem (Illumination Estimation): Col-
lecting all terms related to L in Eqn. (6), we have:

argmin
L

‖R ◦ L−S‖2
F + α‖∇L‖1. (9)

The �1 norm together with the gradient operation makes
it complicated and time consuming to solve the problem.
Therefore, we estimate L from an initial estimation L̂:

argmin
L

‖L − L̂‖2
F + α‖∇L‖1. (10)

Same as LIME [16], we assume that, for color images,
three channels share the same illumination map. Therefore,
the initial illumination map L̂ is estimated as the average of
the input image in RGB color space:

L̂(x) = 1

3

∑
c∈{R,G,B}

Sc(x). (11)

Furthermore, we find the relationship below holds true:

lim
ε→0+

∑
x

∑
d∈{h,v}

(∇d L(x))2

|∇d L̂(x)| + ε
= ‖∇L‖1. (12)

Thus, we use the alternative
∑

x
∑

d∈{h,v}
(∇d L(x))2

|∇d L̂(x)|+ε
to

approximate ‖∇L‖1. As a result, the approximate problem to

Eqn. (10) can be written as follows:

argmin
L

‖L − L̂‖2
F + α

∑
x

∑
d∈{h,v}

(∇d L(x))2

|∇d L̂(x)| + ε
. (13)

This change does not influence the result much because
according to the first term ‖L − L̂‖2

F , the gradients of
L should also be similar to those of L̂. For convenience,
we put Eqn. (13) in a simpler form, where Ad(x) represents

α

|∇d L̂(x)|+ε
:

argmin
L

‖L − L̂‖2
F +

∑
x

∑
d∈{h,v}

Ad(x) · (∇d L(x))2. (14)

As can be observed, Eqn. (14) only involves quadratic terms.
Thus, after differentiating Eqn. (14) with respect to L and
setting the derivative to 0, the problem can be directly figured
out by solving the following:⎛

⎝I +
∑

d∈{h,v}
DT

d Diag(ad)Dd

⎞
⎠ l = l̂, (15)

where I is the identity matrix with proper size and D contains
Dh and Dv , which are the Toeplitz matrices from the discrete
gradient operators with forward difference. Furthermore, x is
the vectorized version of X and the operator Diag(x) is to
construct a diagonal matrix using vector x . Then, we can easily
solve it to obtain the evaluated L:

l =
⎛
⎝I +

∑
d∈{h,v}

DT
d Diag(ad)Dd

⎞
⎠

−1

l̂. (16)

2) Solution to R-Problem (Reflectance Estimation): After
obtaining a desirable L, we compute R:

argmin
R

‖R ◦ L−S‖2
F + β‖∇ R−G‖2

F

+ω
∑

i

‖N Ni (R)‖∗. (17)

An alternating direction minimization algorithm [39] is
provided to effectively optimize this objective function. First,
by substituting R in the second term of Eqn. (17) with an
auxiliary variable R̂, the objective function can be rewritten
as the following equivalent form:
argmin

R,R̂

‖R ◦ L−S‖2
F + ω

∑
i

‖N Ni (R)‖∗

+β‖∇ R̂−G‖2
F , s. t. R = R̂. (18)

Then, a Lagrange multiplier is introduced to remove the
equality constraint. The obtained augmented Lagrangian func-
tion of Eqn. (18) is as follows:

L(R, R̂, Z) = ‖R ◦ L−S‖2
F + ω

∑
i

‖N Ni (R)‖∗

+β‖∇ R̂−G‖2
F + Z ◦ (R̂ − R)

+μ

2
‖R̂ − R‖2

F , (19)

where Z is the Lagrange multiplier and μ is a positive scalar.
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Therefore, the original minimization problem (6) can be
solved using standard alternating direction minimization solu-
tions. Here we iteratively update each variable while regarding
other variables that have been estimated in the previous
iteration as constants.

a) Solution to R-R̂ problem (contrast enhancement):
Neglecting the terms unrelated to R̂, we have the following
optimization problem:
argmin

R̂

β‖∇ R̂−G‖2
F +Z (k) ◦ (R̂ − R(k))

+μ(k)

2
‖R̂ − R(k)‖2

F . (20)

Similar to the solution to Eqn. (14), the estimated R̂ of
the (k + 1)-th iteration can be figured out by differentiating
Eqn. (20) with respect to R̂ and setting the derivative to 0.
Namely, we have:⎛
⎝2β

∑
d∈{h,v}

DT
d Dd + μI

⎞
⎠ r̂

= 2β
∑

d∈{h,v}
DT

d gd + μ(k)r (k) − z(k), (21)

where we use the small letter of r , g and z as the same meaning
of the illumination estimation section. The estimated R̂ is:

r̂ (k+1) =
⎛
⎝2β

∑
d∈{h,v}

DT
d Dd + μI

⎞
⎠

−1

×
⎛
⎝2β

∑
d∈{h,v}

DT
d gd + μ(k)r (k) − z(k)

⎞
⎠ , (22)

where × means matrix multiplication.

b) Solution to R-R problem (noise suppression): Collect-
ing the terms related to R leads to the following problem:
argmin

R
‖R ◦ L−S‖2

F + ω
∑

i

‖N Ni (R)‖∗

+Z (k) ◦ (R̂(k+1) − R) + μ(k)

2
‖R̂(k+1) − R‖2

F . (23)

Note that {N Ni (R)} are corresponded to R but have a dif-
ferent form: R is an image-level representation and {N Ni (R)}
are patch-based ones. For simplicity, we reform Eqn. (23) into:
argmin

R

∑
i

‖N Ni (R) ◦ Li − Si‖2
F + ω

∑
i

‖N Ni (R)‖∗

+
∑

i

Z (k)
i ◦

(
R̂(k+1)

i − N Ni (R)
)

+
∑

i

μ(k)

2
‖R̂(k+1)

i − N Ni (R)‖2
F , (24)

where Li , Si , Z (k)
i , R̂(k+1)

i are the patch-level representations
of L, S, Z (k), R̂(k+1), respectively.

To make it more concise, we now consider each location
and omit all operators with respect to i in the following

presentation. Now we have:
argmin

R
‖R ◦ L−S‖2

F + ω‖R‖∗

+Z (k) ◦ (R̂(k+1) − R) + μ(k)

2
‖R̂(k+1) − R‖2

F . (25)

We first simplify the rest part of the optimization function
apart from the nuclear norm. The above expression can be
reformed as:

argmin
R

‖R‖∗ + L2

ω
◦ ‖R − S/L‖2

F

+μ(k)

2ω
‖R − (R̂(k+1) + Z (k)/μ(k))‖2

F . (26)

It is a modified low-rank minimization problem and can be
transformed into the following formation:
argmin

R
‖R − R̄(k)‖2

F + ‖R‖∗,

R̄(k) = 2S ◦ L + μ(k) R̂(k+1) + Z (k)

2L2 + μ(k)
. (27)

Therefore, the original R-R problem in Eqn. (23) now turns
into a standard low-rank minimization problem [40]:

argmin
N Ni (R)

‖N Ni (R) − N Ni (R̄(k))‖2
F + ‖N Ni (R)‖2∗,

R̄(k) = 2S ◦ L + μ(k) R̂(k+1) + Z (k)

2L2 + μ(k)
, (28)

which has a closed-form solution:
N Ni (R(k+1)) = Sτ (R̄(k)), (29)

where Sτ is the soft shrinkage process.

c) Updating Z and μ: After that, the auxiliary matrix Z
and the penalty scalar μ are updated through:

Z (k+1) = Z (k) + μ(k)(R̂(k+1) − R(k+1)). (30)

μ(k+1) = μ(k)ρ, ρ > 1. (31)

3) Illumination Adjustment: After estimating the illumina-
tion L and reflectance R, the gamma correction is applied to
adjust the illumination. Then, the final enhancement result S′
is generated by:

S′ = R ◦ L ′ 1
γ , (32)

where L ′ is the normalized L, and γ is empirically set to 2.2.
With an input noisy low-light image, the whole process of

our method for image enhancement and denoising is summa-
rized in Algorithm 1.

C. Video Low-Light Enhancement

In this part, we extend our LR3M model to video low-light
enhancement. Compared to single image low-light enhance-
ment, video enhancement has two additional key elements:

• Temporal coherence. The extracted features, e.g. illumi-
nation and reflectance, should be continuous along the
motion trajectories among frames.
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Algorithm 1 Robust Single-Image Low-Light Enhancemen

• Temporal redundancy. In video enhancement, there are
abundant temporal correlation and structural correspon-
dence to facilitate inferring information lost in the degra-
dation process.

Based on these considerations, besides combining the opti-
mization function of each frame, the optimization function of
LR3M for video enhancement makes the following changes.
First, a coherence term is introduced to enforce the illumi-
nation consistency among frames. Second, in the solution of
R-R problem, the similar patches are also searched from the
adjacent frames. The overall function turns to:

argmin
L,R

n∑
t=1

t−1∑
j=1

‖Lt − Ft, j (L j )‖2
F +

n∑
t=1

(
‖Rt ◦ Lt − St‖2

F

+α‖∇Lt‖1 + β‖∇ Rt − Gt‖2
F + ω

∑
i

‖N Ni (Rt )‖∗
)

, (33)

where S = {S1, S2, . . . , Sn}, L = {L1, L2, . . . , Ln} and
R = {R1, R2, . . . , Rn} denote sequence of input frames,
the estimated illumination maps and reflectance maps, respec-
tively. n represents the number of total input frames and
function C(·) measures the inconsistence of input sequence.
Ft, j (·) builds the location correspondence between Lt and L j .

Note that when dealing with a single image, n equals to 1.
There is no inconsistence in the input sequence, which means
the value of function C(L) is 0. The objective function in
Eqn. (33) is simplified to Eqn. (6).

To solve the problem in Eqn. (33), we slightly change the
formation of L-problem (illumination estimation) as follows:

argmin
L,R

n∑
t=1

t−1∑
j=1

‖Lt − Ft, j (L j )‖2
F

+‖Rt ◦ Lt − St‖2
F + α‖∇Lt ‖1. (34)

We use a very simple method to solve this problem: first
estimating {Lt } based on Eqns. (11) and (16), then smoothing

Algorithm 2 Robust Video Low-Light Enhancement

Fig. 3. Dataset used in this paper, which contains 24 low-light images with
different noise levels.

{Lt } to obtain {It } based a joint spatial and temporal smooth-
ing with structure preservation. We use the guided filter [41]
to smooth every 2D slice of the illumination of successive
frames under the guidance of input sequence iteratively, which
is equivalent to 3D structural preserving smoothing. This
procedure is described as follows:

I = F(L; S), (35)

where I = {I1, I2, . . . , In} denotes the sequence of smoothed
illumination maps. F(·) represents the filtering function with
L as input and S as guidance.

In the reflectance estimation, we use smoothed I to replace
estimated L in Eqn. (17) and adjust the block matching
function so that it can find nearest blocks through adjacent
frames. The whole process of our LR3M for video low-light
enhancement and denoising is summarized in Algorithm 2.

IV. EXPERIMENTAL RESULTS

In this section, the experimental results and our analyses
are presented. We first give some analyses of our method.
Then, the proposed method is compared with existing state-of-
the-art methods quantitatively and qualitatively. Furthermore,
we exhibit the results of our method in video enhancement
tasks to demonstrate the generality of our model.

A. Experimental Settings

All experiments are run on MATLAB R2014a with 4G
RAM and Intel Core i5-4210H CPU @2.90GHz. The para-
meters α and β in Eqn. (6) are empirically set as 0.015 and 2.
ε and λ are set to be 1 and 3.5. In general cases, this setting
performs well.

We test 24 low-light images as shown in Fig. 3. This dataset
contains images provided by authors of [16], [19] and some
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Fig. 4. Comparison of different settings. (a) is the result without low-rank term. (b) is the result with α = 0 and (c) is the result with β = 0. The result of
our method is (d).

challenging data with much noise from [42] and [43]. The
dataset of [16] contains 10 low-light images. Most of its
images are noise-free. The dataset of [19] contains 18 low-light
images, which includes both landscape and human images.
DICM [42] dataset contains 69 captured images from com-
mercial digital cameras. Among them, 44 images suffer from
low illumination. Authors of [43] provided some noisy videos
and some of them were obtained in low-light condition. We use
their data for video enhancement and use extracted frames for
image enhancement. In summary, our dataset is a collection
of indoor/outdoor low-light images with different noise levels.

B. Analyses of Our Method

1) Identification of the Unified Framework: In the first
place, we give some analyses of our method. We argue that
in terms of noisy low-light images, it is better to perform
enhancing and denoising simultaneously than to separate them
into two independent jobs. Because it is problematic to decide
the order of these two jobs. To demonstrate that, we use
LIME [16] and BM3D [17] to solve the same task by enhanc-
ing and denoising the low light images separately. In addition,
the parameter σ used in BM3D [17] which indicates the
noise level is set as 5 if the input is denoised first and
10 otherwise. As is shown in Fig. 2, if denoising comes before
enhancing, the denoising procedure easily blurs the image and
causes inaccuracy. On the other hand, if the order is reversed,
the noise in low-light image is inevitably amplified so that the
effectiveness of the following denoising process is weakened,
although σ is much larger.

2) Sequential Decomposition: To show the effectiveness of
sequential decomposition, we use two methods to solve our
objective function, i.e., the iterative solution and sequential
solution. For iterative solution, we substitute ∇L in the second
term of Eqn. (6) with an auxiliary variable T . Then we have
a corresponding augmented Lagrangian function:

L(L, R, T, Y ) = ‖R ◦ L−S‖2
F + α‖T ‖1

+Y ◦ (∇L − T ) + η

2
‖∇L − T ‖2

F

+ω
∑

i

‖N Ni (R)‖∗ + β‖∇ R−G‖2
F , (36)

where Y is the Lagrange multiplier and η is a positive scalar.

In every iteration, we estimate L(k+1) by:

l(k+1) =
⎛
⎝2r (k)T

r (k) + η
∑

d∈{h,v}
DT

d Dd

⎞
⎠

−1

×
(

(2r (k)s + ηDT (t(k) − y(k)

η
)

)
. (37)

Then we consider L(k+1) as constant and estimate R(k+1)

as we discussed in Sec III. After that we update T , y and η
using:

T (k+1) = S α

η(k)
(∇L(k+1) + Y (k)

η(k)
). (38)

Y (k+1) = Y (k) + η(k)(∇L(k+1) − T (k+1)). (39)

η(k+1) = η(k)ρ, ρ > 1. (40)

The results using two different solutions are shown in Fig. 6.
We can see that the sequential solution obtains a better
result than the iterative one, mainly because it prevents the
illumination map from being impaired and makes sure that
most noise is left in the reflectance map.

3) Parameter Study: We also study the effectiveness of
different terms in our objective function. The results of differ-
ent objective function settings are displayed in Fig. 4. Group
(a) shows the result without the low-rank term. Since low-rank
minimization is the key to remove noise while enhancing
the whole image, missing this term leads to a noisy result.
Much noise can be observed in the enlarged local areas shown
below the result image. The second collum (b) is the result
with α = 0, which means the second term of Eqn. (6) is
inactive. Without this term restricting total variation sparsity,
the illumination component becomes more noisy and breaks
the assumption of illumination smoothness. It results in a
worse result compared to (d), the proposed method with α
greater than zero. Besides, removing this term also causes
some mistakes in the output image, i.e. the red part in the right
building, in the first row of (b). (c) is obtained with β = 0.
It is much clearer and free of noise compared to the former
ones. However, without the effort to amplify the contrast of the
image, it looks less distinct and visually pleasing compared
to our proposed method (d), which not only removes noise
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Fig. 5. Decomposition results and corresponding enhancement results of our method. From left to right: the original image S, the initial illumination map L̂
and estimated illumination map L , a rough reflectance map computed by R(0) = S/L using element-wise division, the estimated reflectance map R(k) after
k iterations and the final result S′. For better visual quality, L̂ and L are transformed by gamma transformation.

Fig. 6. Comparison of an iterative decomposition procedure (b) and a
sequential one (c) on a low-light image (a). From left to right: the input
image, result of the iterative solution to Eqn. (6) and result of our method
(LR3M).

when enhancing the image, but also improves the contrast of
it. Consequently, all the constraints in Eqn. (6) are necessary
for deriving a noise free and visually pleasing result.

4) Low-Rank Regularized Retinex Model: Fig. 5 shows
an example of the decomposition results using our method.
From (b) and (c) we can see that after solving Eqn. (9),
we obtain a much more preferable illumination map. It means
that when we amplify the estimated illumination, noise is not
enhanced. Through (c) and (d) we note that with an original
input image full of noise, after we obtain a clean illumination
map, most noise is left in the other part of Retinex model,
i.e. the initial reflectance map shown in (d). This phenomenon
agrees with our assumption. Compared to (d), (e) is less noisy
thanks to the low-rank restriction in our method. Furthermore,
we also improve the overall contrast. This can be observed at
the edges of widows and the tree in (e). Collecting all these
refinements, our final result is demonstrated in (f). It is clearer
and lighter than the input image. In total, our method brings
three benefits, i.e., enhancing the illumination of a low-light
image, preventing noise amplifying and further removing it,
and improving the contrast and visual quality of the final result.

C. Qualitative Comparison

1) Low-Light Enhancement Effectiveness: To evaluate the
enhancing effectiveness of our proposed method, we com-
pare it with conventional histogram equalization (HE),
contrast-limited adaptive histogram equalization (CLAHE) [3],
bio-inspired multi-exposure fusion framework (BIMEF) [24]

and state-of-the-art Retinex based enhancement methods,
i.e., simultaneous reflectance and illumination estimation
(SRIE) [15], naturalness preserved enhancement algorithm
(NPE) [18], probabilistic method for image enhancement
(PIE) [38].

HE and CLAHE are performed using the MATLAB built-in
functions histeq and adapthisteq. They stretch the narrowly
distributed histograms of low-light images globally or locally
in order to enhance the contrast. The results of other methods
are generated by the code downloaded from the authorsİ¯
websites, with recommended experiment settings. BIMEF
fuses multi-exposure images using illumination estimation
techniques to provide an accurate contrast and lightness
enhancement. SRIE uses a weighted variational model to
avoid disadvantages of logarithmic transformation. NPE is
designed to preserve the naturalness of images, and most of
its results have vivid color. PIE uses probabilistic method to
simultaneous estimation of illumination and reflectance in the
linear domain.

Figs. 7 and 8 show several comparisons between enhance-
ment results generated by different methods. In Fig. 7, HE,
CLAHE, SRIE, PIE and BIMEF all fail to enhance the right
window and NPE amplifies noise when enhancing it. Besides,
the result of BIMEF suffers from color distortion. The center
of the girl’s dress is not enhanced in (c), with grey areas even
darker than the input image. On the other hand, our method
not only enhances this part, but also keeps its difference from
left part of the dress, unlike HE, which makes the entire
dress under the same illumination level. In the second rows
of (b) and (e), the girl’s dress looses texture details in the left
part. Compared to them, our method can generate a pleasing
result.

In Fig. 8, similarly, HE, SRIE, NPE PIE and BIMEF erase
details in the wall of the tower and the house while CLAHE
makes the wall darker. Looking at the sky in Fig. 8, it is
obvious that methods like HE, CLAHE and BIMEF cannot
handle it correctly. What’s more, compared to (d) and (f), our
result is enhanced more successfully, since in the second row,
the house of ours is of better visibility that those of SRIE, PIE
and BIMEF.

2) Denoising Effectiveness: Besides enhancing effectness,
our method also demonstrates an impressive denoising ability.
Figs 9, 10 show comparisons among our methods and two
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Fig. 7. Comparisons of low-light image enhancement results.

enhancing methods considering noise. Namely, LIME [16] and
structure-revealing low-light image enhancement [19].

Results of LIME are generated following their work with
a post denoising precedure of BM3D [17], as mentioned in
their paper. In general, LIME does not handle the problem
of illumination over-enhancement, which adds to the noise
amplification. For example, in the second column of Fig. 9,
it can be observed that the car is over-enhanced and in (b) of
Fig. 10, the light from the windows is too bright and the light
on the desk exceeds its original region. It makes noise obvious
despite using an advanced denoising method.

The method of Li et al. [19] particularly takes noise into
consideration under a unified framework rather than similarly
removing the noise by post processing. But its results still
have some noise left and sometimes even more noise than
results of LIME, as can be seen in (c) of Fig. 9, there is
more noise around the light. This is because they used an
iterative method to solve their objective function. A weighted
matrix is introduced to restrict noise in the reflectance map.
However, during the iterations, the noise escapes from the
reflectance to the illumination. Furthermore, in some cases
where there is much noise, the restricted matrix is not enough
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Fig. 8. Comparisons of low-light image enhancement results.

Fig. 9. Comparisons of low-light image enhancement results with a noisy input.

Fig. 10. Comparisons of low-light image enhancement results with a noisy input.

to handle it. In contrast, we use the low-rank regulation to
effectively remove noise.

Fig. 11 gives a more closed comparison on denoising
effectiveness. Since results of LIME are always noisier than

those of the other two methods, we only compare our proposed
method with the method of [19] in Fig. 11. We can find that our
approach performs better in all cases shown in Fig. 11, which
gives a convincing proof of the superiority of our method.
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Fig. 11. Comparisons of low-light image enhancement results in detail.

TABLE I

OBJECTIVE EVALUATION ON OUR DATASET

D. Quantitative Comparison

In addition to subjective comparisons, we also apply objec-
tive measurements to evaluate the performance of the proposed
method objectively. Considering the fact that low-light images
seldom have corresponding reference images, we adopt three
blind quality assessments. Namely, blind tone-mapped quality
index (BTMQI) [44], no-reference image quality metric for
contrast distortion (NIQMC) [45] and blind sharpness metric
in the autoregressive parameter space (ARISMC) [46] to
evaluate the enhancement results comprehensively. Results of
different approaches are summarized in Tab. I.

We assess objective qualities on datasets of [16] and [19].
For BTMQI and ARISMC, smaller values represent bet-
ter image qualities and for NIQMC, larger values indicate
better qualities of image contrast. BTMQI measures image
quality by measuring the average intensity, contrast, and

Fig. 12. Results of proposed methods in video enhancement. The first row:
input frames at time t and time t + 1. The second row: our results at time t
and time t + 1.

structure information of tone-mapped images. ARISMC esti-
mates the image sharpness considering both luminance and
chromatic components, a.k.a., illumination and reflectance.
As for NIQMC, it favors images with higher contrast.

From Tab. I we can see that results of our method generally
have the best qualities on both datasets. Methods of HE and
LIME [16], as observed in the tables, have higher scores of
NIQMC, which indicates strong contrast, it is because they
usually over-enhance input images. For example, the sky and
wall in Fig. 8 (b) and the light and car in Fig. 9 (b). The results
of our methods rank within the top three for all objective
measurements. Therefore, our method has the top average
rank, estimated by adding up the ranks of every measurements.

E. Results of Video Enhancement

Our robust low-light enhancement method can also be
applied in video tasks and show impressive results. Fig. 12
shows our enhancing results of two successive frames denoted
as the frame at time t and t +1. Our method shows impressive
denoising effectiveness and the obtained results are temporar-
ily consistent. Moreover, the illumination of the original video
is not very low. Our method is able to adaptively decide the
enhance level and avoid over-enhancement.

F. Visual Comparison of Sequential and Iterative Estimations

As discussed in [19], for iterative methods, the fidelity term
might play a misleading role in the whole estimation. During
the iteration process, intensive noise hidden in the observed
image S will be assigned to either R or L. In most previous
methods, efforts are put into the illumination component L,
and the reflectance is estimated by R = S/L, which inevitably
includes noise and leads to a noisy result. We show two visual
comparison results in Fig. 13. In the top panel, the input image
is almost noise-free, while in the bottom panel, the input image
contains intensive noise. It is observed that, for the noisy input
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Fig. 13. Two visual comparisons of sequential and iterative estimations.

Fig. 14. Visual comparisons of DPE [47] and the proposed method.
Zooming-in the figure will provide a better look at the enhancement quality.

image, the sequential method achieves better visual quality.
Comparatively, the iterative method leads to a noisy enhanced
result.

G. Comparison to Deep Prior Ensemble

We compare the visual results of our method with Deep
Prior Ensemble (DPE) [47]. As shown in Fig. 14, the results
of DPE have good visual quality. Comparatively, our methods
are better in noise suppression and contrast stretching.

H. Limitations of Low-Rank Prior

First, it brings in more computation complexity to adopt
the low-rank prior, because it requires to calculate the singular
value decomposition of matrices. Second, since the low-rank

Fig. 15. Visual comparisons of the results with and without low-rank priors.

Fig. 16. An example of visual results without the low-rank prior (top panel),
with the traditional 2D low-rank prior (middle panel), and with our proposed
3D low-rank prior (bottom panel). .

minimization is a patch-based algorithm, it will be less effec-
tive if these are no similar patches and the noise level is
low. We show one failure case in the region full of textures
as shown in Fig. 15. It is observed that, with the low-rank
prior, the structural details are enhanced, e.g. the contours
between the grass and flowers and those of sands. However,
some internal textures are removed, since in these regions,
the similar patches are hard to be obtained. It is interesting in
the future to dynamically decide the weighting of the low-rank
term in the joint optimization based on the regional noise level
and patch-level redundancy.

I. Ablation Studies on Low-Rank Prior

Beyond the traditional two-dimensional (2D) low rank prior
to suppress noise, we propose a three-dimensional (3D) low
rank prior in the video low-light enhancement case, where each
atom signal is flattened from a pixel volume Rit ∈ R

b2×s con-
sidering the temporal context to better stabilize the estimation
of the illumination and reflectance layers along the temporal
dimension. b and s are the spatial patch size, and temporal
length. t indexes the t-th most similar atom in the search
window. This 3D low rank prior leads to more temporally
consistent results. We show an example of the visual results
without the low-rank prior, with the traditional 2D low-rank
prior, and with our proposed 3D low-rank prior in Fig. 16. It is
observed that, our method is superior in both noise suppression
and temporal consistency. Especially for the regions denoted
by blue arrows, it is observed that, our proposed 3D low-rank
prior in the bottom panel leads to the sparsest and smallest
temporal differences, which demonstrates our superiority in
the temporal consistency.
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Fig. 17. Comparison with learning-based denoising methods. Zooming-in
the figure will provide a better look at the enhancement quality.

J. Comparison to Learning-Based Denoising Methods

We compare our method with learning-based denoising
methods, including DnCNN [48] and FFDNet [49], as shown
in Fig. 17. The denoising operations are applied on the
reflectance layers. In general, the results include remaining
noise (denoted by red arrows) and blurred details (denoted
by blue arrows), as these methods are trained on nature
images rathessr than the reflectance images. After extracting
the illumination, the noise in the reflectance is amplified and
has a different distribution from that in the original image.

V. CONCLUSION

In this paper we discuss the existing problem of noise
in mainstream methods of low-light enhancement domain.
And we argue that noise should be particularly handled dur-
ing low-light enhancement. However, existing methods either
ignore this issue or do not handle it well. According to
that, we constructively present a robust low-light enhancement
method via low-rank regularized Retinex model. By intention-
ally limiting noise to the minimum, we obtain high-quality
images finally. Our experiments show the impropriety of
treating denoising as a pre/post processing procedure and
extensive results demonstrate the effectiveness of our method.

REFERENCES

[1] C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the dark,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 3291–3300.

[2] M. Abdullah-Al-Wadud, M. H. Kabir, M. A. A. Dewan, and O. Chae,
“A dynamic histogram equalization for image contrast enhance-
ment,” IEEE Trans. Consum. Electron., vol. 53, no. 2, pp. 593–600,
May 2007.

[3] S. M. Pizer, R. E. Johnston, J. P. Ericksen, B. C. Yankaskas, and
K. E. Müller, “Contrast-limited adaptive histogram equalization: Speed
and effectiveness,” in Proc. 1st Conf. Visualizat. Biomed. Comput.,
May 1990, pp. 337–345.

[4] L. Li, R. Wang, W. Wang, and W. Gao, “A low-light image enhancement
method for both denoising and contrast enlarging,” in Proc. IEEE Int.
Conf. Image Process. (ICIP), Sep. 2015, pp. 3730–3734.

[5] L. Zhang et al., “Simultaneous enhancement and noise reduction
of a single low-light image,” IET Image Process., vol. 10, no. 11,
pp. 840–847, Nov. 2016.

[6] D. J. Jobson, Z. Rahman, and G. A. Woodell, “Properties and perfor-
mance of a center/surround retinex,” IEEE Trans. Image Process., vol. 6,
no. 3, pp. 451–462, Mar. 1997.

[7] D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale retinex
for bridging the gap between color images and the human observation
of scenes,” IEEE Trans. Image Process., vol. 6, no. 7, pp. 965–976,
Jul. 1997.

[8] M. Herscovitz and O. Yadid-Pecht, “A modified multi scale retinex
algorithm with an improved global impressionof brightness for wide
dynamic range pictures,” Mach. Vis. Appl., vol. 15, no. 4, pp. 220–228,
Oct. 2004.

[9] C. Xiao and Z. Shi, “Adaptive bilateral filtering and its application
in retinex image enhancement,” in Proc. 7th Int. Conf. Image Graph.,
Jul. 2013, pp. 45–49.

[10] J. Yang, X. Jiang, C. Pan, and C.-L. Liu, “Enhancement of low light
level images with coupled dictionary learning,” in Proc. 23rd Int. Conf.
Pattern Recognit. (ICPR), Dec. 2016, pp. 751–756.

[11] K. G. Lore, A. Akintayo, and S. Sarkar, “LLNet: A deep autoencoder
approach to natural low-light image enhancement,” Pattern Recognit.,
vol. 61, pp. 650–662, Jan. 2017.

[12] R. Kimmel, M. Elad, D. Shaked, R. Keshet, and I. Sobel, “A variational
framework for Retinex,” Int. J. Comput. Vis., vol. 52, no. 1, pp. 7–23,
2003.

[13] M. K. Ng and W. Wang, “A total variation model for retinex,” SIAM J.
Imag. Sci., vol. 4, no. 1, pp. 345–365, Jan. 2011.

[14] X. Fu, Y. Sun, M. LiWang, Y. Huang, X.-P. Zhang, and X. Ding,
“A novel retinex based approach for image enhancement with illumi-
nation adjustment,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), May 2014, pp. 1190–1194.

[15] X. Fu, D. Zeng, Y. Huang, X.-P. Zhang, and X. Ding, “A weighted vari-
ational model for simultaneous reflectance and illumination estimation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 2782–2790.

[16] X. Guo, Y. Li, and H. Ling, “LIME: Low-light image enhancement
via illumination map estimation,” IEEE Trans. Image Process., vol. 26,
no. 2, pp. 982–993, Feb. 2017.

[17] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3-D transform-domain collaborative filtering,” IEEE Trans.
Image Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[18] S. Wang, J. Zheng, H.-M. Hu, and B. Li, “Naturalness pre-
served enhancement algorithm for non-uniform illumination images,”
IEEE Trans. Image Process., vol. 22, no. 9, pp. 3538–3548,
Sep. 2013.

[19] M. Li, J. Liu, W. Yang, X. Sun, and Z. Guo, “Structure-revealing low-
light image enhancement via robust retinex model,” IEEE Trans. Image
Process., vol. 27, no. 6, pp. 2828–2841, Jun. 2018.

[20] X. Ren, M. Li, W.-H. Cheng, and J. Liu, “Joint enhancement and
denoising method via sequential decomposition,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

[21] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, “Edge-preserving
decompositions for multi-scale tone and detail manipulation,” ACM
Trans. Graph., vol. 27, no. 3, pp. 1–10, Aug. 2008.

[22] S. Paris, S. W. Hasinoff, and J. Kautz, “Local Laplacian filters: Edge-
aware image processing with a Laplacian pyramid,” Commun. ACM,
vol. 58, no. 3, pp. 81–91, Feb. 2015.

[23] M. Li, X. Wu, J. Liu, and Z. GUo, “Restoration of unevenly illuminated
images,” in Proc. 25th IEEE Int. Conf. Image Process. (ICIP), Oct. 2018,
pp. 1118–1122.

[24] Z. Ying, G. Li, and W. Gao, “A bio-inspired multi-exposure
fusion framework for low-light image enhancement,” 2017,
arXiv:1711.00591. [Online]. Available: http://arxiv.org/abs/1711.
00591

Authorized licensed use limited to: Peking University. Downloaded on April 30,2020 at 03:32:26 UTC from IEEE Xplore.  Restrictions apply. 



5876 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

[25] L. Shen, Z. Yue, F. Feng, Q. Chen, S. Liu, and J. Ma, “MSR-
Net: Low-light image enhancement using deep convolutional net-
work,” 2017, arXiv:1711.02488. [Online]. Available: http://arxiv.org/abs/
1711.02488

[26] C. Wei, W. Wang, W. Yang, and J. Liu, “Deep retinex decomposition
for low-light enhancement,” in Proc. Brit. Mach. Vis. Conf., Sep. 2018,
pp. 1–12.

[27] W. Yang, S. Wang, Y. Fang, Y. Wang, and J. Liu, “From fidelity to
perceptual quality: A semi-supervised approach for low-light image
enhancement,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
2020, pp. 1–10.

[28] E. J. Candes and B. Recht, “Exact matrix completion via convex opti-
mization,” Found. Comput. Math., vol. 9, no. 6, pp. 717–772, Dec. 2009.

[29] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, “Robust principal
component analysis: Exact recovery of corrupted low-rank matrices via
convex optimization,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 2080–2088.

[30] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma, “Fast
convex optimization algorithms for exact recovery of a corrupted low-
rank matrix,” in Proc. Intl. Workshop Comp. Adv. Multi-Sensor Adapt.
Process., 2009, pp. 1–20.

[31] D. Zhang, Y. Hu, J. Ye, X. Li, and X. He, “Matrix completion by
truncated nuclear norm regularization,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2012, pp. 2192–2199.

[32] Y. Hu, D. Zhang, J. Ye, X. Li, and X. He, “Fast and accurate matrix
completion via truncated nuclear norm regularization,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 9, pp. 2117–2130, Sep. 2013.

[33] S. Ono, T. Miyata, and I. Yamada, “Cartoon-texture image decompo-
sition using blockwise low-rank texture characterization,” IEEE Trans.
Image Process., vol. 23, no. 3, pp. 1128–1142, Mar. 2014.

[34] W. Dong, G. Shi, and X. Li, “Nonlocal image restoration with bilateral
variance estimation: A low-rank approach,” IEEE Trans. Image Process.,
vol. 22, no. 2, pp. 700–711, Feb. 2013.

[35] M. Li, J. Liu, Z. Xiong, X. Sun, and Z. Guo, “Marlow: A joint multi-
planar autoregressive and low-rank approach for image completion,” in
Proc. IEEE Eur. Conf. Comput. Vis., Oct. 2016, pp. 819–834.

[36] M. Li, J. Liu, X. Sun, and Z. Xiong, “Image/Video restoration via
multiplanar autoregressive model and low-rank optimization,” ACM
Trans. Multimedia Comput., Commun., Appl., vol. 15, no. 4, pp. 1–23,
Jan. 2020.

[37] L. Wang, L. Xiao, H. Liu, and Z. Wei, “Variational Bayesian method
for retinex,” IEEE Trans. Image Process., vol. 23, no. 8, pp. 3381–3396,
Aug. 2014.

[38] X. Fu, Y. Liao, D. Zeng, Y. Huang, X.-P. Zhang, and X. Ding, “A prob-
abilistic method for image enhancement with simultaneous illumination
and reflectance estimation,” IEEE Trans. Image Process., vol. 24, no. 12,
pp. 4965–4977, Dec. 2015.

[39] Y. Xu, W. Yin, Z. Wen, and Y. Zhang, “An alternating direction algorithm
for matrix completion with nonnegative factors,” Frontiers Math. China,
vol. 7, no. 2, pp. 365–384, Apr. 2012.

[40] J.-F. Cai, E. J. Candés, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM J. Optim., vol. 20, no. 4,
pp. 1956–1982, Jan. 2010.

[41] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 2013.

[42] C. Lee, C. Lee, and C.-S. Kim, “Contrast enhancement based on layered
difference representation,” in Proc. 19th IEEE Int. Conf. Image Process.,
Sep. 2012, pp. 965–968.

[43] Z. Ren, J. Li, S. Liu, and B. Zeng, “Meshflow video denoising,” in Proc.
IEEE Int. Conf. Image Process. (ICIP), Sep. 2017, pp. 2966–2970.

[44] K. Gu et al., “Blind quality assessment of tone-mapped images via
analysis of information, naturalness, and structure,” IEEE Trans. Multi-
media, vol. 18, no. 3, pp. 432–443, Mar. 2016.

[45] K. Gu, W. Lin, G. Zhai, X. Yang, W. Zhang, and C. W. Chen,
“No-reference quality metric of contrast-distorted images based on
information maximization,” IEEE Trans. Cybern., vol. 47, no. 12,
pp. 4559–4565, Dec. 2017.

[46] K. Gu, G. Zhai, W. Lin, X. Yang, and W. Zhang, “No-reference image
sharpness assessment in autoregressive parameter space,” IEEE Trans.
Image Process., vol. 24, no. 10, pp. 3218–3231, Oct. 2015.

[47] R. Liu, L. Ma, Y. Wang, and L. Zhang, “Learning converged propaga-
tions with deep prior ensemble for image enhancement,” IEEE Trans.
Image Process., vol. 28, no. 3, pp. 1528–1543, Mar. 2019.

[48] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian denoiser: Residual learning of deep CNN for image denoising,”
IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, Jul. 2017.

[49] K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and flexible
solution for CNN-based image denoising,” IEEE Trans. Image Process.,
vol. 27, no. 9, pp. 4608–4622, Sep. 2018.

Xutong Ren received the B.S. degree in computer
science from Peking University, Beijing, China,
in 2019. She is currently pursuing the M.S. degree in
machine learning with Carnegie Mellon University,
Pittsburgh, PA, USA. Her research interests include
computer vision and machine learning.

Wenhan Yang (Member, IEEE) received the B.S.
and Ph.D. degrees (Hons.) in computer science from
Peking University, Beijing, China, in 2012 and 2018,
respectively.

He is currently a Postdoctoral Research Fellow
with the Department of Computer Science, City
University of Hong Kong. He was a Visiting Scholar
with the National University of Singapore, from
September 2015 to September 2016 and from Sep-
tember 2018 to November 2018. His current research
interests include deep-learning-based image process-

ing, bad weather restoration, related applications, and theories.

Wen-Huang Cheng (Senior Member, IEEE)
received the B.S. and M.S. degrees in computer
science and information engineering from National
Taiwan University, Taipei, Taiwan, in 2002 and
2004, respectively, and the Ph.D. degree (Hons.)
from the Graduate Institute of Networking and Mul-
timedia, National Taiwan University, in 2008. He is
currently a Professor with the Institute of Elec-
tronics, National Chiao Tung University (NCTU),
Hsinchu, Taiwan, where he is also the Founding
Director with the Artificial Intelligence and Mul-

timedia Laboratory (AIMMLab). Before joining NCTU, he led the Multi-
media Computing Research Group, Research Center for Information Tech-
nology Innovation (CITI), Academia Sinica, Taipei, from 2010 to 2018.
His current research interests include multimedia, artificial intelligence,
computer vision, machine learning, social media, and financial technol-
ogy. He has received numerous research and service awards, including the
K. T. Li Young Researcher Award from the ACM Taipei/Taiwan Chap-
ter in 2014, the Outstanding Youth Electrical Engineer Award from the
Chinese Institute of Electrical Engineering in 2015, the Top 10% Paper Award
from the 2015 IEEE MMSP, the 2016 Y. Z. Hsu Scientific Paper Award,
the 2017 Ta-Yu Wu Memorial Award from Taiwans Ministry of Science
and Technology (MOST), the 2017 Significant Research Achievements of
Academia Sinica, the 2018 MSRA Collaborative Research Award, and the
Outstanding Reviewer Award of 2018 IEEE ICME. He is also a APSIPA
Distinguished Lecturer.

Jiaying Liu (Senior Member, IEEE) received the
Ph.D. degree (Hons.) in computer science from
Peking University, Beijing, China, 2010.

She is currently an Associate Professor with the
Wangxuan Institute of Computer Technology, Peking
University. She has authored more than 100 tech-
nical articles in refereed journals and proceedings
and holds 42 granted patents. Her current research
interests include multimedia signal processing, com-
pression, and computer vision. She is a Senior
Member of CSIG and CCF. She was a Visiting

Scholar with the University of Southern California, Los Angeles, CA, USA,
from 2007 to 2008. She has served as a member of Membership Services
Committee in the IEEE Signal Processing Society, a member of Multimedia
Systems and Applications Technical Committee (MSA TC), Visual Signal
Processing and Communications Technical Committee (VSPC TC) in the
IEEE Circuits and Systems Society, a member of the Image, Video, and
Multimedia (IVM) Technical Committee in APSIPA. She was a Visiting
Researcher with the Microsoft Research Asia in 2015 supported by the Star
Track Young Faculties Award. She has also served as an Associate Editor
of the IEEE TRANSACTIONS ON IMAGE PROCESSING, and JVCI (Elsevier),
the Technical Program Chair of the IEEE VCIP-2019/ACM ICMR-2021,
the Publicity Chair of the IEEE ICME-2020/ICIP-2019, and the Area Chair
of CVPR-2021/ECCV-2020/ICCV-2019. She was the APSIPA Distinguished
Lecturer from 2016 to 2017.

Authorized licensed use limited to: Peking University. Downloaded on April 30,2020 at 03:32:26 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


